Vascular Neural Network Phenotypic Transformation After Traumatic Injury: Potential Role in Long-Term Sequelae

J. Badaut, G. J. Bix

Research output: Contribution to journalArticlepeer-review

Abstract

The classical neurovascular unit (NVU), composed primarily of endothelium, astrocytes, and neurons, could be expanded to include smooth muscle and perivascular nerves present in both the up- and downstream feeding blood vessels (arteries and veins). The extended NVU, which can be defined as the vascular neural network (VNN), may represent a new physiological unit to consider for therapeutic development in stroke, traumatic brain injury, and other brain disorders (Zhang et al., Nat Rev Neurol 8(12):711-716, 2012). This review is focused on traumatic brain injury and resultant post-traumatic changes in cerebral blood flow, smooth muscle cells, matrix, blood-brain barrier structures and function, and the association of these changes with cognitive outcomes as described in clinical and experimental reports. We suggest that studies characterizing TBI outcomes should increase their focus on changes to the VNN, as this may yield meaningful therapeutic targets to resolve posttraumatic dysfunction.

Original languageEnglish
Pages (from-to)394-406
Number of pages13
JournalTranslational Stroke Research
Volume5
Issue number3
DOIs
StatePublished - Jun 2014

ASJC Scopus Subject Areas

  • General Neuroscience
  • Clinical Neurology
  • Cardiology and Cardiovascular Medicine

Keywords

  • Blood-brain barrier
  • Cerebral blood flow
  • Juvenile traumatic injury
  • Matrix
  • Neurovascular unit
  • Smooth muscle cells
  • Traumatic brain injury

Cite this