TY - JOUR
T1 - Placental Gene Expression Responses to Maternal Protein Restriction in the Mouse
AU - Gheorghe, C. P.
AU - Goyal, R.
AU - Holweger, J. D.
AU - Longo, L. D.
N1 - Funding Information:
We thank Brenda Kreutzer for her assistance in the preparation of this manuscript and JD Heck of the DNA Array Core, University of California Irvine, Irvine, CA for technical assistance. This work was supported, in part by USPHS Grant HD-03807 to LDL.
PY - 2009/5
Y1 - 2009/5
N2 - Objective: Maternal protein restriction has been shown to have deleterious effects on placental development, and has long-term consequences for the progeny. We tested the hypothesis that, by the use of microarray technology, we could identify specific genes and cellular pathways in the developing placenta that are responsive to maternal protein deprivation, and propose a potential mechanism for observed gene expression changes. Methods: We fed pregnant FVB/NJ mice from day post-coitum 10.5 (DPC10.5) to DPC17.5, an isocaloric diet containing 50% less protein than normal chow. We used the Affymetrix Mouse 430A_2.0 array to measure gene expression changes in the placenta. We functionally annotated the regulated genes, and examined over-represented functional categories and performed pathway analysis. For selected genes, we confirmed the microarray results by use of qPCR. Results: We observed 244 probe sets, corresponding to 235 genes, regulated by protein restriction (p < 0.001), with ninety-one genes being up-regulated, and 153 down-regulated. Up-regulated genes included those involved in the p53 pathway, apoptosis, negative regulators of cell growth, negative regulators of cell metabolism and genes related to epigenetic control. Down-regulated genes included those involved in nucleotide metabolism. Conclusions: Microarray analysis has allowed us to describe the genetic response to maternal protein deprivation in the mouse placenta. We observed that negative regulators of cell growth and metabolism in conjunction with genes involved in epigenesis were up-regulated, suggesting that protein deprivation may contribute to growth restriction and long-term epigenetic changes in stressed tissues and organs. The challenge will be to understand the cellular and molecular mechanisms of these gene expression responses.
AB - Objective: Maternal protein restriction has been shown to have deleterious effects on placental development, and has long-term consequences for the progeny. We tested the hypothesis that, by the use of microarray technology, we could identify specific genes and cellular pathways in the developing placenta that are responsive to maternal protein deprivation, and propose a potential mechanism for observed gene expression changes. Methods: We fed pregnant FVB/NJ mice from day post-coitum 10.5 (DPC10.5) to DPC17.5, an isocaloric diet containing 50% less protein than normal chow. We used the Affymetrix Mouse 430A_2.0 array to measure gene expression changes in the placenta. We functionally annotated the regulated genes, and examined over-represented functional categories and performed pathway analysis. For selected genes, we confirmed the microarray results by use of qPCR. Results: We observed 244 probe sets, corresponding to 235 genes, regulated by protein restriction (p < 0.001), with ninety-one genes being up-regulated, and 153 down-regulated. Up-regulated genes included those involved in the p53 pathway, apoptosis, negative regulators of cell growth, negative regulators of cell metabolism and genes related to epigenetic control. Down-regulated genes included those involved in nucleotide metabolism. Conclusions: Microarray analysis has allowed us to describe the genetic response to maternal protein deprivation in the mouse placenta. We observed that negative regulators of cell growth and metabolism in conjunction with genes involved in epigenesis were up-regulated, suggesting that protein deprivation may contribute to growth restriction and long-term epigenetic changes in stressed tissues and organs. The challenge will be to understand the cellular and molecular mechanisms of these gene expression responses.
KW - Gene regulation
KW - Microarray
KW - Placenta
KW - Protein restriction
KW - p53
UR - http://www.scopus.com/inward/record.url?scp=65049090005&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=65049090005&partnerID=8YFLogxK
U2 - 10.1016/j.placenta.2009.03.002
DO - 10.1016/j.placenta.2009.03.002
M3 - Article
C2 - 19362366
SN - 0143-4004
VL - 30
SP - 411
EP - 417
JO - Placenta
JF - Placenta
IS - 5
ER -