TY - JOUR
T1 - Locking Screws With a Threaded Degradable Polymer Collar Reduce Construct Stiffness Over Time
AU - Schultz, Blake J.
AU - Amin, Nirav H.
AU - Mattison, Braden J.
AU - Mir, Hassan R.
AU - Shah, Anjan R.
AU - Cerynik, Douglas L.
N1 - Publisher Copyright:
© 2020 Lippincott Williams and Wilkins. All rights reserved.
PY - 2020/3/1
Y1 - 2020/3/1
N2 - Objectives:The stiffness of locking plates provide increased stability for early fracture healing but may limit late interfragmentary motion (IFM) necessary for secondary bone healing. An ideal plating construct would provide early rigidity and late flexibility to optimize bone healing. A novel screw plate construct utilizing locking screws with a degradable polymer locking mechanism is a dynamic option.Methods:Conventional locked plating constructs (group A) were compared with locking screws with a threaded degradable polymer collar before (group B) and after polymer dissolution (group C). Monotonic axial compression, monotonic torsion, cyclic axial load to failure, and IFM at the near and far cortices were tested on synthetic bone models.Results:One-way analysis of variance and post hoc Tukey-Kramer testing demonstrated similar axial stiffness in group A (873 ± 146 N/mm) and B (694 ± 314 N/mm) but significantly less stiffness in group C (379 ± 59 N/mm; F(2,15) = 9.12, P = 0.003). Groups A and B also had similar IFM, but group C had significantly increased IFM at both the near (F(2, 15) = 48.66, P = 2.76E-07) and far (F(2, 15) = 11.78, P = 0.0008) cortices. In cyclic axial load to failure, group A (1593 ± 233 N) and B (1277 ± 141 N) were again similar, but group C was significantly less (912 ± 256 N; F(2, 15) = 15.00, P = 0.0003). All failures were above the 500-N threshold seen in typical weight-bearing restrictions for fracture care. Torsional stiffness demonstrated significant differences between all groups (F(2, 15) = 106.64, P = 1.4E-09).Conclusions:Use of locking plates with a degradable polymer collar show potential for in vitro construct dynamization. Future in vivo studies are warranted to assess performance under combined loading and the effects of decreasing construct stiffness during the course of bony healing.
AB - Objectives:The stiffness of locking plates provide increased stability for early fracture healing but may limit late interfragmentary motion (IFM) necessary for secondary bone healing. An ideal plating construct would provide early rigidity and late flexibility to optimize bone healing. A novel screw plate construct utilizing locking screws with a degradable polymer locking mechanism is a dynamic option.Methods:Conventional locked plating constructs (group A) were compared with locking screws with a threaded degradable polymer collar before (group B) and after polymer dissolution (group C). Monotonic axial compression, monotonic torsion, cyclic axial load to failure, and IFM at the near and far cortices were tested on synthetic bone models.Results:One-way analysis of variance and post hoc Tukey-Kramer testing demonstrated similar axial stiffness in group A (873 ± 146 N/mm) and B (694 ± 314 N/mm) but significantly less stiffness in group C (379 ± 59 N/mm; F(2,15) = 9.12, P = 0.003). Groups A and B also had similar IFM, but group C had significantly increased IFM at both the near (F(2, 15) = 48.66, P = 2.76E-07) and far (F(2, 15) = 11.78, P = 0.0008) cortices. In cyclic axial load to failure, group A (1593 ± 233 N) and B (1277 ± 141 N) were again similar, but group C was significantly less (912 ± 256 N; F(2, 15) = 15.00, P = 0.0003). All failures were above the 500-N threshold seen in typical weight-bearing restrictions for fracture care. Torsional stiffness demonstrated significant differences between all groups (F(2, 15) = 106.64, P = 1.4E-09).Conclusions:Use of locking plates with a degradable polymer collar show potential for in vitro construct dynamization. Future in vivo studies are warranted to assess performance under combined loading and the effects of decreasing construct stiffness during the course of bony healing.
KW - construct stiffness
KW - degradable polymer collar
KW - interfragmentary motion
KW - locking screws
KW - micromotion
UR - http://www.scopus.com/inward/record.url?scp=85079770267&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85079770267&partnerID=8YFLogxK
U2 - 10.1097/BOT.0000000000001664
DO - 10.1097/BOT.0000000000001664
M3 - Article
C2 - 32084090
SN - 0890-5339
VL - 34
SP - 151
EP - 157
JO - Journal of orthopaedic trauma
JF - Journal of orthopaedic trauma
IS - 3
ER -