Elovanoids are a novel class of homeostatic lipid mediators that protect neural cell integrity upon injury

Surjyadipta Bhattacharjee, Bokkyoo Jun, Ludmila Belayev, Jessica Heap, Marie Audrey Kautzmann, Andre Obenaus, Hemant Menghani, Shawn J. Marcell, Larissa Khoutorova, Rong Yang, Nicos A. Petasis, Nicolas G. Bazan

Research output: Contribution to journalArticlepeer-review

Abstract

We report the characterization of a novel class of lipid mediators termed elovanoids (ELVs) (ELV-N32 and ELV-N34), which are dihydroxylated derivatives of 32:6n3 and 34:6n3, respectively. The precursors of ELVs are made by elongation of a 22:6n3 fatty acid and catalyzed by ELOVL4 (elongation of very-long-chain fatty acids–4). The structure and stereochemistry of ELVs were established using synthetic compounds produced by stereocontrolled total synthesis. We report that ELV-mediated protection is induced in neuronal cultures undergoing either oxygen/glucose deprivation or N-methyl-D-aspartate receptor–mediated excitotoxicity, as well as in experimental ischemic stroke. The methyl ester or sodium salt of ELV-N32 and ELV-N34 resulted in reduced infarct volumes, promoted cell survival, and diminished neurovascular unit disruption when administered 1 hour following 2 hours of ischemia by middle cerebral artery occlusion. Together, our data reveal a novel prohomeostatic and neuroprotective lipid-signaling mechanism aiming to sustain neural cell integrity.

Original languageEnglish
Article number1700735
JournalScience Advances
Volume3
Issue number9
DOIs
StatePublished - 2017

ASJC Scopus Subject Areas

  • General

Cite this