Changes in the distribution and function of leukocytes after whole-body iron ion irradiation

Research output: Contribution to journalArticlepeer-review

Abstract

High-energy particle radiation could have a considerable impact on health during space missions. This study evaluated C57BL/6 mice on Day 40 after total-body 56Fe26+ irradiation at 0, 1, 2 and 3 gray (Gy). Radiation consistently increased thymus mass (one-way ANOVA: P < 0.005); spleen, liver and lung masses were similar among all groups. In the blood, there was no radiation effect on the white blood cell (WBC) count or major leukocyte types. However, the red blood cell count, hemoglobin, hematocrit and the CD8+ T cytotoxic (Tc) cell count and percentage all decreased, while both the CD4:CD8 (Th:Tc) cell ratio and spontaneous blastogenesis increased, in one or more irradiated groups compared with unirradiated controls (P < 0.05 vs 0 Gy). In contrast, splenic WBC, lymphocyte, B cell and T helper (Th) counts, %B cells and the CD4:CD8 ratio were all significantly elevated, while Tc percentages decreased, in one or more of the irradiated groups compared with controls (P < 0.05 vs 0 Gy). Although there were trends for minor, radiation-induced increases in %CD11b+ granulocytes in the spleen, cells double-labeled with adhesion markers (CD11b+CD54+, CD11b+CD62E+) were normal. Splenocyte spontaneous blastogenesis and that induced by mitogens (PHA, ConA, LPS) was equivalent to normal. In bone marrow, the percentage of cells expressing stem cell markers, Sca-1 and CD34/Sca-1, were low in one or more of the irradiated groups (P < 0.05 vs 0 Gy). Collectively, the data indicate that significant immunological abnormalities still exist more than a month after 56Fe irradiation and that there are differences dependent upon body compartment.

Original languageEnglish
Pages (from-to)477-491
Number of pages15
JournalJournal of Radiation Research
Volume57
Issue number5
DOIs
StatePublished - Sep 1 2016

ASJC Scopus Subject Areas

  • Radiation
  • Radiology Nuclear Medicine and imaging
  • Health, Toxicology and Mutagenesis

Keywords

  • hematopoiesis
  • mouse model
  • particle radiation
  • spaceflight
  • total-body irradiation

Cite this