TY - JOUR
T1 - 1,25-Dihydroxyvitamin D3 Suppresses TLR8 Expression and TLR8-Mediated Inflammatory Responses in Monocytes In Vitro and Experimental Autoimmune Encephalomyelitis In Vivo
AU - Li, Bo
AU - Baylink, David J.
AU - Deb, Chandra
AU - Zannetti, Claudia
AU - Rajaallah, Fatima
AU - Xing, Weirong
AU - Walter, Michael H.
AU - Lau, K. H.William
AU - Qin, Xuezhong
N1 - 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) suppresses autoimmunity and inflammation; however, the mechanism of its action has not been fully understood. We sought in this study to determine whether the anti-immune/anti-inflammatory action of 1,25(OH)2D3 is in part mediated through an interplay between 1,25(OH)2D3 and toll-like receptor (TLR)7/8 signaling.
PY - 2013/3/14
Y1 - 2013/3/14
N2 - 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) suppresses autoimmunity and inflammation; however, the mechanism of its action has not been fully understood. We sought in this study to determine whether the anti-immune/anti-inflammatory action of 1,25(OH)2D3 is in part mediated through an interplay between 1,25(OH)2D3 and toll-like receptor (TLR)7/8 signaling. 1,25(OH)2D3 treatment prior to and/or following experimental autoimmune encephalomyelitis (EAE) induction effectively reduced inflammatory cytokine expression in the spinal cord and ameliorated EAE. These effects were accompanied with a reduction in expression of several TLRs with the most profound effect observed for TLR8. The expression of TLR8 adaptor protein MyD88 was also significantly reduced by 1,25(OH)2D3. To determine the molecular mechanism by which 1,25(OH)2D3 suppresses EAE induction of TLR8 and inflammatory cytokine expression, we evaluated whether 1,25(OH)2D3 can directly inhibit TLR8 signaling and the resulting inflammatory responses in human THP-1 monocytes. 1,25(OH)2D3 treatment not only significantly reduced TLR8 expression but also the expression or activity of MyD88, IRF-4, IRF-7 and NF-kB in monocytes challenged with TLR8 ligands. TLR8 promoter-luciferase reporter assays indicated that 1,25(OH)2D3 decreases TLR8 mRNA level in part via inhibiting TLR8 gene transcription activity. As a result of inhibition on TLR8 signaling cascade at various stages, 1,25(OH)2D3 significantly diminished the TLR8 target gene expression (TNF-α and IL-1β). In summary, our novel findings suggest that TLR8 is a new target of 1,25(OH)2D3 and may mediate the anti-inflammatory action of 1,25(OH)2D3. Our findings also point to a destructive role of TLR8 in EAE and shed lights on pathogenesis of multiple sclerosis. © 2013 Li et al.
AB - 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) suppresses autoimmunity and inflammation; however, the mechanism of its action has not been fully understood. We sought in this study to determine whether the anti-immune/anti-inflammatory action of 1,25(OH)2D3 is in part mediated through an interplay between 1,25(OH)2D3 and toll-like receptor (TLR)7/8 signaling. 1,25(OH)2D3 treatment prior to and/or following experimental autoimmune encephalomyelitis (EAE) induction effectively reduced inflammatory cytokine expression in the spinal cord and ameliorated EAE. These effects were accompanied with a reduction in expression of several TLRs with the most profound effect observed for TLR8. The expression of TLR8 adaptor protein MyD88 was also significantly reduced by 1,25(OH)2D3. To determine the molecular mechanism by which 1,25(OH)2D3 suppresses EAE induction of TLR8 and inflammatory cytokine expression, we evaluated whether 1,25(OH)2D3 can directly inhibit TLR8 signaling and the resulting inflammatory responses in human THP-1 monocytes. 1,25(OH)2D3 treatment not only significantly reduced TLR8 expression but also the expression or activity of MyD88, IRF-4, IRF-7 and NF-kB in monocytes challenged with TLR8 ligands. TLR8 promoter-luciferase reporter assays indicated that 1,25(OH)2D3 decreases TLR8 mRNA level in part via inhibiting TLR8 gene transcription activity. As a result of inhibition on TLR8 signaling cascade at various stages, 1,25(OH)2D3 significantly diminished the TLR8 target gene expression (TNF-α and IL-1β). In summary, our novel findings suggest that TLR8 is a new target of 1,25(OH)2D3 and may mediate the anti-inflammatory action of 1,25(OH)2D3. Our findings also point to a destructive role of TLR8 in EAE and shed lights on pathogenesis of multiple sclerosis. © 2013 Li et al.
KW - Up-Regulation/drug effects
KW - Cell Line
KW - Down-Regulation/drug effects
KW - Encephalomyelitis, Autoimmune, Experimental/drug therapy
KW - Humans
KW - Mice, Inbred C57BL
KW - Interleukin-1beta/metabolism
KW - Anti-Inflammatory Agents/pharmacology
KW - Signal Transduction/drug effects
KW - Animals
KW - Tumor Necrosis Factor-alpha/metabolism
KW - Monocytes/cytology
KW - Toll-Like Receptor 8/genetics
KW - Inflammation/genetics
KW - Female
KW - Ligands
KW - Mice
KW - Calcitriol/pharmacology
KW - Spinal Cord/drug effects
UR - http://www.scopus.com/inward/record.url?scp=84875035826&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84875035826&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/700e56d6-2d15-3479-baeb-b8c06ad247cf/
U2 - 10.1371/journal.pone.0058808
DO - 10.1371/journal.pone.0058808
M3 - Article
C2 - 23516559
SN - 1932-6203
VL - 8
SP - e58808
JO - PLoS ONE
JF - PLoS ONE
IS - 3
M1 - e58808
ER -